Augmented Reality
Component System

ARC

The framework in brief

Component-based programming framework
Written in C++, uses Qt4/5

Multiplatform: Unix, Linux, Windows

Extensible engine able to load and use at runtime:

e component libraries;
e new data types;
e exogenous component systems.

Introduces simple component and application models.
Website: http://arcs.ibisc.univ-evry.fr

Component model

Similar to Qt's metaobjects (http://qt-project.org/).
Component inputs: slots, outputs: signals
Communication: synchronous via signal/slot connection

Application model

An application is consisting of two parts:
e A contextual part;
e A configurational part.

A contextual part is composed of:
e A set of component libraries to load;
e A component pool;
e A constant pool.

A configurational part is a set of concurrent processes.

A process is controlled by a statemachine and is composed of a
set of operational configurations (bound to states of statema-
chine) called sheets. A sheet contains:

e pre-connection invocations to configure components;
e connections to set the operational configuration;
e post-connection invocations to run the configuration;

e cleanup invocations to restore component states.

Framework parts

arcsengine: parses and runs application descriptions;
arcslibmaker: library development assistant;

arcswizard: graphical front-end to arcsengine;

arcsbuild: builds component libraries needed by applications;
arcseditor: application graphical editor;

arcs1to2: ports applications and libraries;

libarcs.so|arcs.dll : main library;
libarcsguiw.so|arcsguiw.dll : helper library for gui mode;

ARCSDIR : environment variable needed by arcslibmaker
(should indicate the path where ARCS is installed);

ARCSBUILDPATH : environment variable needed by
arcsbuilder (should indicate the path where compo-
nent library sources are stored).

Extending the engine

Declaring a native component

#include <QObject>

// QObject must be a component ancestor
class MyComponent public QObject

{
Q-OBJECT // mandatory
public:
// mandatory constructor
MyComponent(QObject* parent=0);
public slots:
void mySlot();
signals:
void mySignal();
}i

Defining a component library (unix systems)

1. Prepare components source files;
Run arcslibmaker (produces a project);
Edit XML library description (.alx file);

Run gmake (produces a makefile);

o~ DN

Rum make to compile.

Integrating new data types

Subclass ARCSTypeFactoryTemplate<MyNewType>.

#include <arcs/arcslibtoolkit.h>

class ARCSTypeFactoryTemplate_MyNewType
public ARCSTypeFactoryTemplate<MyNewType>

{
public:
virtual QString getTypeName() const {
// returns the type name for ARCS
protected:
virtual MyNewType parse(QString s) {
// returns data constructed from s
virtual QString serialize (MyNewType mnt) {
// returns a QString serializing mnt
I

An optional step is to make this data type known by Qt as
well: Q_DECLARE_METATYPE (MyNewType)

Integrating exogenous component systems

Subclass :
e ARCSAbstractFamily to register the appropriate com-
ponent factories;

e ARCSAbstractComponent to define an ARCS compo-
nent compatible behavior.

Supported native types

void, boolean, int, short, long, float, double,
string, constant, component, size

Special component types

ARCSGeneralLogger: component logger for debugging;
composite: component made of aggregation of components;
script: scripting component using Javascript;

statemachine: process controller (transitions can be trig-
gered by passing tokens via slot setToken(QString));

http://arcs.ibisc.univ-evry.fr
http://qt-project.org/

Command line

arcslibmaker

arcslibmaker [--help] [filel

arcslibmaker has two modes, one for generating ARCS library
wrappers (it needs an xml file describing the library contents),

the second for adding ARCS options to Qt project files.

arcsengine
arcsengine [OPTION]... [XML_FILE]...
Overriding application mode :

-b: simple loop based applications.

-e: event loop based console applications.
-g: event loop based GUI applications.
-t: threaded application.

-te: threaded event based application.
Defining options:

-d: define constants

-p: define a profile

-0: define a file where to dump profile

XML formats and markup hierarchy

+ : at least one, ? : one or none, #: defined elsewhere.
File descriptions

Application (file parsed by arcsengine or libarcs)

’ application: mode?=base|event|thread| threadevent|gui’

context#

processes

process: controller ’

Component library (file parsed by arcslibmaker)

library

header+: name ’

components?

component+: name ’

families?

family+: name

type+: name

Profile (file parsed by arcsengine or libarcs)

constant+: id, type

]—‘ Textual serialization of constant

Sub-element descriptions

Context

context

constant+: id, type ’

]—‘ Textual serialization of constant ’

components

component+: id, type|fi|e’

MTextual serialization of component’

Sheet

link: source, signal, destination, slot, queued?

{ preconnections %
{ postconnections F

’ invoke: destination, slot, type’

]{Textual serialization of passed invocation data

Component descriptions

Statemachine

first: name

last?: name

transitions?

transition—+: source, token, destination

Composite component

interface

slots?

{ method+: alias, component, method

signals?

(© CC-BY-SA 2013 Jean-Yves Didier.

